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Large-scale spiral structures in turbulent thermal convection between two vertical plates
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By means of a three-dimensional numerical simulation of the Boussinesq equations, it is observed that the
turbulent flow induced by thermal convection between two differentially heated vertical plates can generate
strongly spiral structures on large scales. In this paper, the flow patterns and the temporal evolution of such
large-scale spiral structures are manifested. It is shown that the length scale of the spiral structures is compa-
rable to the width of the convection layer and their lifetime is about two or three orders of magnitude longer
than that of small-scale structures of the turbulence. To understand the physical mechanism of the emergence
of such structures, a topological interpretation of generating the structures and the role of helicity in preserving
the structures are investigated and discussed.
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I. INTRODUCTION vorticity, of which the horizontal scale is nearly an order of
magnitude smaller than the layer depth. As opposed to the
The generation of large-scale coherent structures is one éhechanism of large-scale instability, they proposed that the
the most interesting and yet poorly understood processes physical mechanism responsible for these different scaling
turbulent flows. Frisctet al.[1] found a numerical evidence structures is the interaction between the buoyancy induced
that small forcing lacking isotropy and parity invariance vertical flow and the shear associated with the large-scale
could lead to the growth of a very strong large-scale helicahorizontal cellular motions which exist instantaneously near
flow. They attributed the emergence of this phenomenon tghe top and bottom boundaries.
the large-scale instability caused by the so-called anisotropic However, only a few published works have contributed to
kinetic alpha(AKA) effect. Sulemet al. [2] further demon-  the understanding of the coherent structures in the thermal
strated that these large-scale structures are generated bycenvection in a vertical fluid layer. Boudjemaetial.[6] and
mechanism of inverse cascade with successive appearanceffillips [7], respectively, performed DNS studies on the
structures of larger and larger scales and eventually the flowatural convection between two vertical plates heated at dif-
goes to a steady state dominated by structures of the largefétrent temperatures. But the latter case is at lower Rayleigh
available scales. Yakhot and Pdl3] also presented their number (Ra 4.6x 10* and Ra= 1.28x 10°). The main focus
results of direct numerical simulatiof®NS) showing three- was on the statistical mean flow behavior rather than on the
dimensional inverse cascade which leads to the generation tfrge-scale coherent structures. Versteegh and Nieuw&tadt
a large-scale secondary flow by anisotropic small-scale priinvestigated the same flow through DNS with any larger
mary flow. They explained this phenomenon as a manifesta-
tion of long-wave instability of the corresponding small- A

scale flow. | T,- W 1‘}“‘
For the flows induced by thermal convection, most inves- L
tigations have been concentrated on the RayleighaBi — T2
g

convection. In such cases, the Rayleigh number plays an
important role in generating different types of large-scale
structures. In the so-called “soft turbulence” regime at low
Rayleigh numbers (Ra4x10’, normally, Clever and
Busse[4] reported enhanced vertical vorticity associated
with the toroidal component of fluid motion, when the flow
undergoes bifurcation to oscillatory knot convection. This
phenomenon occurs on horizontal length scales comparable
to the depth of the convection layer. In the “hard turbulence” ¥
regime at sufficiently high Rayleigh numbers, Cortese and ﬂ
Balachandaf5] investigated the vortical nature of thermal
plumes through a numerically simulated Rayleighh8el
convection. They revealed the existence of up-moving and
down-moving plumes associated with significant vertical ey "
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FIG. 2. Mean velocity(@ and mean temperatufb) distributions of the thermal convection flow @0.71, Ra=5.4x 10°).

computational domain. It was realized in that work that bet-sible physical mechanism of the emergence of such spiral
ter agreement with the experimental data of Dafa'Alla andstructures are elucidated and discussed.
Betts[9] can be achieved with the larger computational do-
main size. Using the DNS data, Versteegh and Nieuwstadt |I. DIRECT NUMERICAL SIMULATION OF THE
also studied the coherent structures present in the [fl@jy BOUSSINESQ EQUATIONS
and argued that the most unstable flow pattern in the transi- ) )
tional regime could still be recognized in the turbulent flow  1he flow induced by the thermal convection can be de-
at a Rayleigh number in the range of %.40° to 5.0< 10° . s.cr|bed.by the well-known Boussinesq equations. In the non-
In the present work, the Versteegh and Nieuwstadt's cas@imensional forms they are as follows:
[10] with Ra=5.4x 10° is further scrutinized through DNS. U
|

It is observed that the large-scale coherent spiral structures — =0, (1)
generally occur in the thermal convection between two ver- IX;
tical isothermal plates kept at different temperatufeg. 1). 5

- DUi ap 9°U;
The flow patterns and the temporal evolution of such large- =— 2 4Py +RaPIT—Ty) 8, )
scale spiral structures are manifested. The nature and pos- Dt X IX;jIX;
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FIG. 3. Isolated instantaneous spiral structures corresponding to the high-helicity regions near the @) plaje(c)] and the cold
plate (d) (Pr=0.71, Ra=5.4x 10°), which appear in different moments, and the center points of the starting section of the structures are
located, respectively, about at the coordinate§0d5, 1, 2.4, (0.8, 2.2, 0, (0.95, 1.5, 5.5 and(0.05, 2.2, 6.
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FIG. 4. Projections of the flow
pattern on the planes perpendicu-
lar to the z axis. Domains en-
closed with dash-dotted squares
correspond to the structure given

in Fig. 3a).
DT T =0.71. In the present numerical simulation the Prandtl num-
Dt IX[9X;" (3 beris taken as 0.71 and R&.4x 10°. The flow is therefore

well above the instability threshold. Equatiofi®—(3) are

where Ra BgATh% kv is the Rayleigh number, Prv/k  solved numerically in a computational domain of the size
the Prandtl number, and is the spacing between the two L, XL, XL,=1XaX27 in the normal, spanwise, and
plates. The coefficient8, v, andx are the thermal expan- streamwise directions. For the boundary conditions, the no-
sion coefficient, kinematic viscosity, and thermal diffusion slip condition is applied to the surfaces of the two vertical
coefficient of the fluid, respectively. The subscript indi¢es plates for velocity and the isotherm condition for tempera-
andj(=1,2,3) in the above equations correspond to compoture. In the homogeneousand z direction, the flow is as-
nent inx, y, z, respectively.§;; is the Kronecker delta. If Pr  sumed periodic. A Cartesian grid system with the number of
of the fluid is constant, then the only characteristic parametegrid pointsN, <X N, X N,=96x 90X 206 is adopted. In thg
is Ra. All the variables in this paper are nondimensionalizedandz direction the grid spacing is uniform, whereas in the
with h being the length scales/h being the velocity scale, direction the grid spacing is nonuniform with the minimum
andh?/ « being the time scale. size near the wall and the maximum size near the centerline.

According to Ruth’s instability analysigl1], the lowest From Kolmogorov hypothesis, it is estimated that the
critical Rayleigh number at which the flow starts to transitsmallest length and time scales are, respectively, 0.017 and
from laminar to turbulent state is about 5710 when Pr1x10 #in the flow. The numerical technique applied here is
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x=0.07

FIG. 5. Projections of the flow
pattern on the planes perpendicu-
lar to the x axis. Domains en-
closed with dash-dotted squares
correspond to the structure given
in Fig. 3@).

(d (e) ®

a finite-volume scheme with second-order discretization forcold walls. These flow structures are then examined with
both the nonlinear advection and the viscous diffusion termstheir projections on a series of planes perpendicular tathe
The time-stepping method is an implicit scheme of secondaxis (mean streamwigeand x axis (normal to the wallg
order accuracy. The numerical accuracy is similar to that inrespectively. For examples, Figs. 4 and 5 show such projec-
Versteegh and Nieuwstad{8] study. It was considered that tions in which domains enclosed with a dash-dotted square
such an accuracy is sufficient for a qualitative description ofyox correspond to the flow structure of FigaB It is seen in
the large-scale flow patterns. _ _ Fig. 4 that the spiral structure originates at the plared
After a sufficiently long time of computation starting from o5r the cold wall. At the plane=0, which is the bottom

the initial condition, about 0.6 nondimensional time long, theCrOSS section of the computational domain, a pair of spiral

flow reaches a statistica!ly _stea}dy state. The mean VeIOCi.tgingularities exist, one being inside the square box and the
and mean temperature distributions of the flow are shown i ther outside Th’ese two singularities wind up to form an

Fig. 2, together with the results obtained by Versteegh an : . .
Niuwstadt[8]. asymmetric counter-rotating vortex pair at the plase0.3.

In the following section we will present only the compu- Meanwhile, at the plang=0.07 very close to the cold wall,

tational results associated with the instantaneous flow paf Singularity of skew divergent node in the square box can be

terns and temporal evolution of the large-scale spiral coher2PServed in Fig. 5. This singularity node is strongly charac-
ent structures. terized by the upward velocity component indirection

against the general downward motion of the fluid outside the
singularity region due to buoyancy effect. The strong upward
motion generates large shear rates around the singularity
node causing this node singularity to develop a spiral singu-
larity which becomes evident at the plare-0.2. Further
In the present study the major observation is the spiraway from the cold wall, i.e., at the plamxe=0.4, a pair of
structures in addition to the commonly observed spanwis@asymmetric counter-rotating vortices form with one of them
vortices which represent the main coherent features of thinside the square box as shown in Fig. 5. Upwardg i-
flow. In this section the helical form of the large-scale struc-rection, az=0.3-1.2, the vortex of the counter-rotating pair
tures extracted from the database is to be illustrated descriloutside and below the square bdsee Fig. % becomes
ing their temporal evolution. weaker and weaker and disappears eventually. As the spiral
In order to have an intuitive impression of the large-scaleflow reaches a position near the hot wall, the strength of the
spiral structures in this type of flows, Fig. 3 shows somevortex highlighted in the square box degenerates again to a
instantaneous flow patterns represented by the streamlingévergent-node singularity(see Fig. 5 for the plane
passing through the high-helicity regions near the hot or=0.93) denoting a transverse velocity component direc-

IIl. INSTANTANEOUS FLOW PATTERNS AND TIME
EVOLUTION OF THE LARGE-SCALE SPIRAL
STRUCTURES
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FIG. 6. Evolution of a spiral
structure with timeAt=5x10"°
is the time step normalized by
h?/ k (Pr=0.71, Ra=5.4x 10°).
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tion. Figure 4 thus illustrates that the spiral structure in Fig.structure shown in Fig. (@) through searching the field val-
3(a) stretches mainly upwards tilting from the cold wall to ues with large relative helicity at a particular instance to get
the hot with an angle of about 21.2°. a spiral structure like in Fig.(8). Then, the flow streamlines
The cause of the spiral structure from generation to disare plotted before and after this time until the spiral stream-
appearance is interesting and important for the investigatiotines disappear. This figure thus illustrates that the lifetime of
of its mechanism. The time evolution of the spiral structuresuch a large-scale spiral structure is about of the same order
shown in Fig. 8b) is illustrated in Fig. 6, wherégt is the  of the global time scale defined by the characteristic lehgth
starting time for observatiomy\t=5x10"° is the nondimen- and the friction velocity u, [u,=7,/p~0.011, 7,
sional time increment in the DNS computation. The proce-= u(dW/dx)|,,ai]. The lifetime of the helical flow pattern is
dure to find such a time series is first to identify a midlife equivalent to the time interval in which the flow preserves its
topological structure. It is seen that this time interval is at

7]ig least two orders of magnitude longer than that of small-scale
i S— (a) turbulence structure.
—

U

(b) IV. QUALITATIVE INTERPRETATION OF THE
GENERATION OF SPIRAL STRUCTURES
—_//\\ © As Moffatt [12] stated, spiral structures are the eventual
C

outcome of Kelvin-Helmholtz instability, which is an all-
pervasive phenomenon associated with almost all shear flows
at high Reynolds number. This argument can be shortly sum-
@ marized as follows. A turbulent flow comprises a random
distribution of vortex sheets and tubes, each of such struc-
FIG. 7. Kelvin-Helmholtz instability of a plane vortex sheet tures being subjected to the local rate of strain associated
(from Moffatt [12]): (a) a plane vortex sheetb) sinusoidal pertur-  With all other vortex structures. In the buoyancy-driven flow
bation; (c) a discontinuity of curvature at a finite tintg of order ~ discussed here, it is obvious that vortex sheets are readily
(KAU); (d) the vortex sheet winds up at the position of discontinu-formed especially near the cold and hot walls. It is known
ity of curvature forming a spiral singularity. that a plane vortex sheet is absolutely unstable to sinusoidal
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FIG. 8. Distribution of the
relative helicity h. Domains en-
closed with dash-dotted squares
corresponding to the structure
given in Fig. 3b).
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disturbances, and, as shown by Mode], the nonlinear dividing H with the local scalar magnitudes of velocity and
development of an initially sinusoidal perturbation developsyorticity, is called relative helicityh, i.e., h=H/(|u||o|)

a mild singularity, i.e., a discontinuity of curvature, at a finite — .59 whered is the angle between the velocity and vor-
time t. of order kAU), wherek is the wave number of the ity vectors. BothH andh are pseudoscalar quantities since
perturbation, and\ U is the difference of tangential veloci- they change signs if the frame of reference changes from a

ties on both sides of the vortex sheet. Kragg], who in-  jont handed coordinate system to a left-handed one, in other

tegrated the equations for vortex sheet evolution with 45 1 andh are quantities lacking parity invariance.
“desingularisation” procedure, demonstrated that when Numerical experimentéShtilmanet al. [17]) have shown

>t. the vortex sht_aet windfs up at the position of discontinuityinat in regions of low energy dissipation the velocity and
of curvature forming a spiral singularity. _ vorticity vectors have a tendency to align. Brandenburg and
Figure 7(from Moffatt [12]) shows the above-mentioned payawski[18] in their analysis of the energy and helicity
mechanism of Kelvin-Helmholtz instability. The spiral sin- gnecira highlighted that large-scale structures supply most of
gularity shown in Fig. 7 is quite similar to that appears in theyhe energy to the helical parts. It is conjectured that the he-

square box at the plane=0 in Fig. 4, except that in the icity of the flow has an intrinsic property to suppress dissi-
latter case there exists a streamwise velocity componerjaiion. A simple explanation is as follows. Boussinesq equa-
which moves the singularity upwards to form a spiral struc-jo, (2) can be written in its vectorial form as

ture.
V. ROLE OF HELICITY IN PRESERVING THE SPIRAL Dl] -

STRUCTURES D X w=-V +V2u+Bg(T—To)es,

It has been suggestddisinober and Levich15], Moffatt (4)
[16]) that the fluctuations of helicity play an important role
in the nonlinear dynamics of complex flows and is likely
related directly to coherent structures in turbulence. Helicityyheree, is the unit vector in the vertica direction. In Eq.
(strictly speaking helicity densifyH is defined as the scalar (4), the only nonlinear term that exchanges energy between
product of the velocity and vorticity vectors, i.éd=u-w, different scales is the Lamb vectox w. This term is related
wherew=V Xu. The dimensionless parameter, obtained byto the relative helicity by an identity

p u-u
_+_
2
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(ﬁ) FIG. 9. Distribution of the in-
stantaneous dissipation rate'.
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structure given in Fig. ®).
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FIG. 10. (a) Dissipation rate and absolute value of relative helicity in the instantaneous flow region same as {h)Fi@) €onditional
average of relative helicity conditioned upon dissipation rate for all the computational points. The average of absolute value of relative
helicity for 50 divisions from 0 to 1 with the width of 0.02 is computed for the points whdseelong to those zones.
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10X 0|2 the instantaneous dissipation rate is at a relatively low level.
== =1 h?. (5)  The relationship between the helicity and the dissipation rate
|ul*| ol can be further elucidated by plotting the helicity directly

. . T - . against the dissipation rate as shown in Fig. 10. Figufe)10
Thus, ina ﬂo‘f’ region with high helicity, the amplitude of clgearly shows thgt for the spiral flow indicgted in IgigbB

the Lamb vectou X w is correspondingly low, and hence the high-helicity magnitudes are closely associated with the low

energy exchange between different scales becomes less sigssipation values. Figure (8 is a similar plot but with the

nificant. A earticular example is the Beltrami flow, in which ¢gnditional averaging over 50 equally spaced intervals in

h=1 and|uxX®|=0 , hence, Eq(4) becomes linear. This €'/¢/,,,. These plots confirm the conjecture metioned above.

means that no energy transfer between different scales occur$ie other structures are also analyzed in similar ways, the

in Beltrami flow. Generally speaking, in a high Reynolds same conclusion has also been drawn.
number flow the viscous dissipation of energy-containing

scales can be negligible. The removal of the energy of these

scales. is me}inly dug to nonlinear interaption and cascade VI. CONCLUDING REMARKS

behavior. This explains why a strong helical flow structure _ _ o

on a certain scale can preserve its energy and survive much (1) By means of the DNS of Boussinesq equations, it is

longer than a nonhelical one. observed that the turbulent flow induced by the thermal con-
Furthermore, if the energy cascade is suppressed by thection between two differentially heated vertical plates can

effect of helicity, the viscous dissipation of the smallest scalegenerate large-scale spiral structures. The length scale of

would also be reduced. Thus, a flow region with high-such spiral structures is comparable to the width of the con-

helicity values is conjectured to correspond to that of lowvection I.ayer and their lifetime is about two or three orders

dissipation. The istantaneous dissipation rdtean be writ-  of magnitude longer than that of small-scale structures of the

ten as turbulence.
(2) The physical mechanism of the formation of such
. dui auf large-scale spiral structures can be attributed to the Kelvin-
€TV % ®  Helmholtz instability, which leads to spiral singularities on a

vortex sheet. The spiral singularities are then stretched by the
Figures 8 and 9 show the distributions of relative helicity andfluid motion in the direction of the vortex axis causing the
the instantaneous dissipation rate respectively. In these figeventual formation of the large-scale spiral structures.
ures, the flow pattern in the enclosed square boxes is related (3) The role of helicity in the flow is to suppress the
to the spiral structure, shown in Fig(8. It is seen there that energy cascade of turbulence, reducing the enstrophy pro-
in the region of the spiral structure the relative helicity is duction, and hence preserving the topological structure of the
large and reaches a maximum level, while the distribution ofarge-scale spiral flow for a significantly long time interval.
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