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Large-scale spiral structures in turbulent thermal convection between two vertical plates

Minghao Wang,* Song Fu,† and Guanghua Zhang‡
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By means of a three-dimensional numerical simulation of the Boussinesq equations, it is observed that the
turbulent flow induced by thermal convection between two differentially heated vertical plates can generate
strongly spiral structures on large scales. In this paper, the flow patterns and the temporal evolution of such
large-scale spiral structures are manifested. It is shown that the length scale of the spiral structures is compa-
rable to the width of the convection layer and their lifetime is about two or three orders of magnitude longer
than that of small-scale structures of the turbulence. To understand the physical mechanism of the emergence
of such structures, a topological interpretation of generating the structures and the role of helicity in preserving
the structures are investigated and discussed.
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I. INTRODUCTION

The generation of large-scale coherent structures is on
the most interesting and yet poorly understood processe
turbulent flows. Frischet al. @1# found a numerical evidenc
that small forcing lacking isotropy and parity invarian
could lead to the growth of a very strong large-scale hel
flow. They attributed the emergence of this phenomenon
the large-scale instability caused by the so-called anisotr
kinetic alpha~AKA ! effect. Sulemet al. @2# further demon-
strated that these large-scale structures are generated
mechanism of inverse cascade with successive appearan
structures of larger and larger scales and eventually the
goes to a steady state dominated by structures of the la
available scales. Yakhot and Pelz@3# also presented thei
results of direct numerical simulations~DNS! showing three-
dimensional inverse cascade which leads to the generatio
a large-scale secondary flow by anisotropic small-scale
mary flow. They explained this phenomenon as a manife
tion of long-wave instability of the corresponding sma
scale flow.

For the flows induced by thermal convection, most inv
tigations have been concentrated on the Rayleigh-Be´nard
convection. In such cases, the Rayleigh number plays
important role in generating different types of large-sc
structures. In the so-called ‘‘soft turbulence’’ regime at lo
Rayleigh numbers (Ra,43107, normally!, Clever and
Busse @4# reported enhanced vertical vorticity associat
with the toroidal component of fluid motion, when the flo
undergoes bifurcation to oscillatory knot convection. Th
phenomenon occurs on horizontal length scales compar
to the depth of the convection layer. In the ‘‘hard turbulenc
regime at sufficiently high Rayleigh numbers, Cortese a
Balachandar@5# investigated the vortical nature of therm
plumes through a numerically simulated Rayleigh-Be´nard
convection. They revealed the existence of up-moving
down-moving plumes associated with significant verti
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vorticity, of which the horizontal scale is nearly an order
magnitude smaller than the layer depth. As opposed to
mechanism of large-scale instability, they proposed that
physical mechanism responsible for these different sca
structures is the interaction between the buoyancy indu
vertical flow and the shear associated with the large-sc
horizontal cellular motions which exist instantaneously n
the top and bottom boundaries.

However, only a few published works have contributed
the understanding of the coherent structures in the ther
convection in a vertical fluid layer. Boudjemadiet al. @6# and
Phillips @7#, respectively, performed DNS studies on t
natural convection between two vertical plates heated at
ferent temperatures. But the latter case is at lower Rayle
number (Ra54.63104 and Ra51.283105). The main focus
was on the statistical mean flow behavior rather than on
large-scale coherent structures. Versteegh and Nieuwstad@8#
investigated the same flow through DNS with any larg

FIG. 1. Schematic of the thermal convection between two v
tical plates.
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FIG. 2. Mean velocity~a! and mean temperature~b! distributions of the thermal convection flow (Pr50.71, Ra55.43105).
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computational domain. It was realized in that work that b
ter agreement with the experimental data of Dafa’Alla a
Betts @9# can be achieved with the larger computational d
main size. Using the DNS data, Versteegh and Nieuws
also studied the coherent structures present in the flow@10#,
and argued that the most unstable flow pattern in the tra
tional regime could still be recognized in the turbulent flo
at a Rayleigh number in the range of 5.43105 to 5.03106 .
In the present work, the Versteegh and Nieuwstadt’s c
@10# with Ra55.43105 is further scrutinized through DNS
It is observed that the large-scale coherent spiral struct
generally occur in the thermal convection between two v
tical isothermal plates kept at different temperatures~Fig. 1!.
The flow patterns and the temporal evolution of such lar
scale spiral structures are manifested. The nature and
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sible physical mechanism of the emergence of such sp
structures are elucidated and discussed.

II. DIRECT NUMERICAL SIMULATION OF THE
BOUSSINESQ EQUATIONS

The flow induced by the thermal convection can be d
scribed by the well-known Boussinesq equations. In the n
dimensional forms they are as follows:

]ui

]xi
50, ~1!

Dui

Dt
52

]p

]xi
1Pr

]2ui

]xj]xj
1Ra Pr~T2T0!d3i , ~2!
res are

FIG. 3. Isolated instantaneous spiral structures corresponding to the high-helicity regions near the hot plate@~a!, ~b!, ~c!# and the cold

plate ~d! (Pr50.71, Ra55.43105), which appear in different moments, and the center points of the starting section of the structu
located, respectively, about at the coordinates of~0.95, 1, 2.4!, ~0.8, 2.2, 0!, ~0.95, 1.5, 5.6!, and~0.05, 2.2, 6!.
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FIG. 4. Projections of the flow
pattern on the planes perpendic
lar to the z axis. Domains en-
closed with dash-dotted square
correspond to the structure give
in Fig. 3~a!.
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Dt
5

]2T

]xj]xj
, ~3!

where Ra5bgDTh3/kn is the Rayleigh number, Pr5n/k
the Prandtl number, andh is the spacing between the tw
plates. The coefficientsb, n, andk are the thermal expan
sion coefficient, kinematic viscosity, and thermal diffusi
coefficient of the fluid, respectively. The subscript indicei
and j (51,2,3) in the above equations correspond to com
nent inx, y, z, respectively.d i j is the Kronecker delta. If Pr
of the fluid is constant, then the only characteristic param
is Ra. All the variables in this paper are nondimensionaliz
with h being the length scale,k/h being the velocity scale
andh2/k being the time scale.

According to Ruth’s instability analysis@11#, the lowest
critical Rayleigh number at which the flow starts to tran
from laminar to turbulent state is about 5710 when
06630
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50.71. In the present numerical simulation the Prandtl nu
ber is taken as 0.71 and Ra55.43105. The flow is therefore
well above the instability threshold. Equations~1!–~3! are
solved numerically in a computational domain of the s
Lx3Ly3Lz513p32p in the normal, spanwise, an
streamwise directions. For the boundary conditions, the
slip condition is applied to the surfaces of the two vertic
plates for velocity and the isotherm condition for tempe
ture. In the homogeneousy and z direction, the flow is as-
sumed periodic. A Cartesian grid system with the numbe
grid pointsNx3Ny3Nz5963903206 is adopted. In they
andz direction the grid spacing is uniform, whereas in thex
direction the grid spacing is nonuniform with the minimu
size near the wall and the maximum size near the center

From Kolmogorov hypothesis, it is estimated that t
smallest length and time scales are, respectively, 0.017
131024 in the flow. The numerical technique applied here
6-3
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FIG. 5. Projections of the flow
pattern on the planes perpendic
lar to the x axis. Domains en-
closed with dash-dotted square
correspond to the structure give
in Fig. 3~a!.
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a finite-volume scheme with second-order discretization
both the nonlinear advection and the viscous diffusion ter
The time-stepping method is an implicit scheme of seco
order accuracy. The numerical accuracy is similar to tha
Versteegh and Nieuwstadt’s@8# study. It was considered tha
such an accuracy is sufficient for a qualitative description
the large-scale flow patterns.

After a sufficiently long time of computation starting from
the initial condition, about 0.6 nondimensional time long, t
flow reaches a statistically steady state. The mean velo
and mean temperature distributions of the flow are show
Fig. 2, together with the results obtained by Versteegh
Niuwstadt@8#.

In the following section we will present only the comp
tational results associated with the instantaneous flow
terns and temporal evolution of the large-scale spiral coh
ent structures.

III. INSTANTANEOUS FLOW PATTERNS AND TIME
EVOLUTION OF THE LARGE-SCALE SPIRAL

STRUCTURES

In the present study the major observation is the sp
structures in addition to the commonly observed spanw
vortices which represent the main coherent features of
flow. In this section the helical form of the large-scale stru
tures extracted from the database is to be illustrated des
ing their temporal evolution.

In order to have an intuitive impression of the large-sc
spiral structures in this type of flows, Fig. 3 shows so
instantaneous flow patterns represented by the stream
passing through the high-helicity regions near the hot
06630
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cold walls. These flow structures are then examined w
their projections on a series of planes perpendicular to thz
axis ~mean streamwise! and x axis ~normal to the walls!,
respectively. For examples, Figs. 4 and 5 show such pro
tions in which domains enclosed with a dash-dotted squ
box correspond to the flow structure of Fig. 3~a!. It is seen in
Fig. 4 that the spiral structure originates at the planez50
near the cold wall. At the planez50, which is the bottom
cross section of the computational domain, a pair of sp
singularities exist, one being inside the square box and
other outside. These two singularities wind up to form
asymmetric counter-rotating vortex pair at the planez50.3.
Meanwhile, at the planex50.07 very close to the cold wall
a singularity of skew divergent node in the square box can
observed in Fig. 5. This singularity node is strongly char
terized by the upward velocity component inz direction
against the general downward motion of the fluid outside
singularity region due to buoyancy effect. The strong upw
motion generates large shear rates around the singul
node causing this node singularity to develop a spiral sin
larity which becomes evident at the planex50.2. Further
away from the cold wall, i.e., at the planex50.4, a pair of
asymmetric counter-rotating vortices form with one of the
inside the square box as shown in Fig. 5. Upwards inz di-
rection, asz50.3–1.2, the vortex of the counter-rotating pa
outside and below the square box~see Fig. 5! becomes
weaker and weaker and disappears eventually. As the s
flow reaches a position near the hot wall, the strength of
vortex highlighted in the square box degenerates again
divergent-node singularity~see Fig. 5 for the planex
50.93) denoting a transverse velocity component inx direc-
6-4
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FIG. 6. Evolution of a spiral
structure with time,Dt5531025

is the time step normalized by
h2/k (Pr50.71, Ra55.43105).
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tion. Figure 4 thus illustrates that the spiral structure in F
3~a! stretches mainly upwards tilting from the cold wall
the hot with an angle of about 21.2°.

The cause of the spiral structure from generation to d
appearance is interesting and important for the investiga
of its mechanism. The time evolution of the spiral structu
shown in Fig. 3~b! is illustrated in Fig. 6, wheretST is the
starting time for observation,Dt5531025 is the nondimen-
sional time increment in the DNS computation. The pro
dure to find such a time series is first to identify a midl

FIG. 7. Kelvin-Helmholtz instability of a plane vortex she
~from Moffatt @12#!: ~a! a plane vortex sheet;~b! sinusoidal pertur-
bation; ~c! a discontinuity of curvature at a finite timetc of order
(kDU); ~d! the vortex sheet winds up at the position of discontin
ity of curvature forming a spiral singularity.
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structure shown in Fig. 6~d! through searching the field val
ues with large relative helicity at a particular instance to
a spiral structure like in Fig. 3~b!. Then, the flow streamlines
are plotted before and after this time until the spiral strea
lines disappear. This figure thus illustrates that the lifetime
such a large-scale spiral structure is about of the same o
of the global time scale defined by the characteristic length
and the friction velocity u* @u* 5Atw /r'0.011, tw
5m(dW/dx)uwall]. The lifetime of the helical flow pattern is
equivalent to the time interval in which the flow preserves
topological structure. It is seen that this time interval is
least two orders of magnitude longer than that of small-sc
turbulence structure.

IV. QUALITATIVE INTERPRETATION OF THE
GENERATION OF SPIRAL STRUCTURES

As Moffatt @12# stated, spiral structures are the eventu
outcome of Kelvin-Helmholtz instability, which is an all
pervasive phenomenon associated with almost all shear fl
at high Reynolds number. This argument can be shortly s
marized as follows. A turbulent flow comprises a rando
distribution of vortex sheets and tubes, each of such st
tures being subjected to the local rate of strain associa
with all other vortex structures. In the buoyancy-driven flo
discussed here, it is obvious that vortex sheets are rea
formed especially near the cold and hot walls. It is know
that a plane vortex sheet is absolutely unstable to sinuso

-
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FIG. 8. Distribution of the
relative helicity h. Domains en-
closed with dash-dotted square
corresponding to the structur
given in Fig. 3~b!.
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disturbances, and, as shown by Moore@13#, the nonlinear
development of an initially sinusoidal perturbation develo
a mild singularity, i.e., a discontinuity of curvature, at a fin
time tc of order (knU), wherek is the wave number of the
perturbation, andnU is the difference of tangential veloc
ties on both sides of the vortex sheet. Krasny@14#, who in-
tegrated the equations for vortex sheet evolution with
‘‘desingularisation’’ procedure, demonstrated that whent
.tc the vortex sheet winds up at the position of discontinu
of curvature forming a spiral singularity.

Figure 7~from Moffatt @12#! shows the above-mentione
mechanism of Kelvin-Helmholtz instability. The spiral sin
gularity shown in Fig. 7 is quite similar to that appears in t
square box at the planez50 in Fig. 4, except that in the
latter case there exists a streamwise velocity compon
which moves the singularity upwards to form a spiral stru
ture.

V. ROLE OF HELICITY IN PRESERVING THE SPIRAL
STRUCTURES

It has been suggested~Tsinober and Levich@15#, Moffatt
@16#! that the fluctuations of helicity play an important ro
in the nonlinear dynamics of complex flows and is like
related directly to coherent structures in turbulence. Helic
~strictly speaking helicity density! H is defined as the scala
product of the velocity and vorticity vectors, i.e.,H5uW •vW ,
wherevW 5“3uW . The dimensionless parameter, obtained
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dividing H with the local scalar magnitudes of velocity an

vorticity, is called relative helicityh, i.e., h5H/(uuW uuvW u)
5cosu , whereu is the angle between the velocity and vo
ticity vectors. BothH andh are pseudoscalar quantities sin
they change signs if the frame of reference changes fro
right-handed coordinate system to a left-handed one, in o
words,H andh are quantities lacking parity invariance.

Numerical experiments~Shtilmanet al. @17#! have shown
that in regions of low energy dissipation the velocity a
vorticity vectors have a tendency to align. Brandenburg a
Rekowski @18# in their analysis of the energy and helicit
spectra highlighted that large-scale structures supply mos
the energy to the helical parts. It is conjectured that the
licity of the flow has an intrinsic property to suppress dis
pation. A simple explanation is as follows. Boussinesq eq
tion ~2! can be written in its vectorial form as

DuW

Dt
2uW 3vW 52“S p

r
1

uW •uW

2
D 1“2uW 1bg~T2T0!eW3 ,

~4!

whereeW3 is the unit vector in the verticalz direction. In Eq.
~4!, the only nonlinear term that exchanges energy betw
different scales is the Lamb vectoruW 3vW . This term is related
to the relative helicity by an identity
6-6
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FIG. 9. Distribution of the in-
stantaneous dissipation ratee8.
Domains enclosed with dash
dotted squares correspond to th
structure given in Fig. 3~b!.

FIG. 10. ~a! Dissipation rate and absolute value of relative helicity in the instantaneous flow region same as in Fig. 3~b!; ~b! Conditional
average of relative helicity conditioned upon dissipation rate for all the computational points. The average of absolute value o
helicity for 50 divisions from 0 to 1 with the width of 0.02 is computed for the points whosee8 belong to those zones.
066306-7
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uuW 3vW u2

uuW u2uvW u2
512h2. ~5!

Thus, in a flow region with high helicity, the amplitude o
the Lamb vectoruW 3vW is correspondingly low, and hence th
energy exchange between different scales becomes less
nificant. A particular example is the Beltrami flow, in whic
h51 and uuW 3vW u50 , hence, Eq.~4! becomes linear. This
means that no energy transfer between different scales oc
in Beltrami flow. Generally speaking, in a high Reynol
number flow the viscous dissipation of energy-contain
scales can be negligible. The removal of the energy of th
scales is mainly due to nonlinear interaction and casc
behavior. This explains why a strong helical flow structu
on a certain scale can preserve its energy and survive m
longer than a nonhelical one.

Furthermore, if the energy cascade is suppressed by
effect of helicity, the viscous dissipation of the smallest sc
would also be reduced. Thus, a flow region with hig
helicity values is conjectured to correspond to that of l
dissipation. The istantaneous dissipation ratee8 can be writ-
ten as

e85n
]ui8

]xj

]ui8

]xj
. ~6!

Figures 8 and 9 show the distributions of relative helicity a
the instantaneous dissipation rate respectively. In these
ures, the flow pattern in the enclosed square boxes is rel
to the spiral structure, shown in Fig. 3~b!. It is seen there tha
in the region of the spiral structure the relative helicity
large and reaches a maximum level, while the distribution
ch

. J

ss

o
an
.J

06630
sig-

urs

g
se
e

ch

he
e
-

d
g-
ed

f

the instantaneous dissipation rate is at a relatively low le
The relationship between the helicity and the dissipation r
can be further elucidated by plotting the helicity direct
against the dissipation rate as shown in Fig. 10. Figure 1~a!
clearly shows that for the spiral flow indicated in Fig. 3~b!,
high-helicity magnitudes are closely associated with the l
dissipation values. Figure 10~b! is a similar plot but with the
conditional averaging over 50 equally spaced intervals
e8/emax8 . These plots confirm the conjecture metioned abo
The other structures are also analyzed in similar ways,
same conclusion has also been drawn.

VI. CONCLUDING REMARKS

~1! By means of the DNS of Boussinesq equations, it
observed that the turbulent flow induced by the thermal c
vection between two differentially heated vertical plates c
generate large-scale spiral structures. The length scal
such spiral structures is comparable to the width of the c
vection layer and their lifetime is about two or three orde
of magnitude longer than that of small-scale structures of
turbulence.

~2! The physical mechanism of the formation of su
large-scale spiral structures can be attributed to the Kel
Helmholtz instability, which leads to spiral singularities on
vortex sheet. The spiral singularities are then stretched by
fluid motion in the direction of the vortex axis causing th
eventual formation of the large-scale spiral structures.

~3! The role of helicity in the flow is to suppress th
energy cascade of turbulence, reducing the enstrophy
duction, and hence preserving the topological structure of
large-scale spiral flow for a significantly long time interva
e
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